Lecture 5. Random Signal Analysis

- Random Variables and Random Processes
- Signal Transmission through a Linear System

Discrete Random Variables

 A discrete random variable takes on a countable number of possible values.

Suppose that a discrete random variable X takes on one of the values x_1, \ldots, x_n .

✓ Distribution functions:

Probability Mass Function: $p(x_i) = Pr\{X = x_i\}$

$$\sum_{i=1}^n p(x_i) = 1$$

Cumulative Distribution Function: $F(a) = \Pr\{X \le a\} = \sum_{x_i \le a} p(x_i)$

✓ Moments:

Expected Value, or Mean: $\mu_X = E[X] = \sum_{i=1}^n x_i p(x_i)$

The m-th Moment: $E[X^m] = \sum_{i=1}^n x_i^m p(x_i), \ m = 1, 2, ...$

Continuous Random Variables

 A continuous random variable has an uncountable set of possible values.

X is a continuous random variable if there exists a nonnegative function f, defined for all real $x \in (-\infty, \infty)$, having the property that for any set B of real numbers, $\Pr\{X \in B\} = \int_{\mathbb{R}} f(x) dx$.

✓ f is called the probability density function (pdf) of X, denoted as: $f_{X}(X)$

$$\int_{-\infty}^{\infty} f_X(x) dx = 1$$

- ✓ Cumulative Distribution Function (cdf): $F_X(a) = \int_{-\infty}^a f_X(x) dx$
- \checkmark Expected Value, or Mean: $\mu_X = E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$
- \checkmark The m-the Moment: $E[X^m] = \int_{-\infty}^{\infty} x^m f_X(x) dx$, m = 1, 2, ...

Variance

Define variance of a random variable X as:

$$Var[X] = E[(X - E[X])^2]$$

- \checkmark Var[X] describes how far apart X is from its mean on the average.
- ✓ Var[X] can be also obtained as: $Var[X] = E[X^2] (E[X])^2$
- ✓ Var[X] is usually denoted as σ_x^2 .
- ✓ The square root of Var[X], σ_X , is called the **standard deviation** of X.

Example 1. Uniform Distribution

• X is a uniform random variable on the interval (α, β) if its pdf is given by

$$f_X(x) = \begin{cases} \frac{1}{\beta - \alpha} & \alpha \le x \le \beta \\ 0 & otherwise \end{cases}$$

$$\checkmark \text{ cdf:} \qquad F_X(a) = \int_{-\infty}^a f_X(x) dx = \begin{cases} 0 & a \le \alpha \\ \frac{a - \alpha}{\beta - \alpha} & \alpha < a < \beta \\ 1 & a \ge \beta \end{cases}$$

$$\checkmark \quad \text{Mean:} \qquad \mu_X = \int_{-\infty}^{\infty} x f_X(x) dx = \frac{\beta + \alpha}{2}$$

✓ Variance:

✓ The second moment:

$$E[X^{2}] = \int_{-\infty}^{\infty} x^{2} f_{X}(x) dx = \frac{\beta^{2} + \alpha \beta + \alpha^{2}}{3}$$

$$\sigma_X^2 = E[X^2] - \mu_X^2$$
$$= \frac{(\beta - \alpha)^2}{12}$$

Example 2. Gaussian (Normal) Distribution

X is a Gaussian random variable with parameters μ_0 and σ_0^2 if its pdf is given by

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma_0} \exp\left(-\frac{(x-\mu_0)^2}{2\sigma_0^2}\right)$$

X is denoted as $X \sim \mathcal{N}(\mu_0, \sigma_0^2)$

✓ Mean:
$$\mu_X = \mu_0$$

✓ Variance:
$$\sigma_X^2 = \sigma_0^2$$

$$\checkmark \text{ cdf: } F_X(a) = \int_{-\infty}^a f_X(x) dx = 1 - \int_a^\infty \frac{1}{\sqrt{2\pi}\sigma_0} \exp\left\{-\frac{(x - \mu_0)^2}{2\sigma_0^2}\right\} dx$$

$$= 1 - \int_{\frac{a-\mu_0}{\sigma_0}}^{\infty} \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{z^2}{2}\right\} dz = 1 - Q\left(\frac{a-\mu}{\sigma_0}\right)$$

$$Q(\alpha) \triangleq \int_{\alpha}^{\infty} \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{x^2}{2}\right\} dx$$

$$Q(\alpha) \triangleq \int_{\alpha}^{\infty} \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{x^2}{2}\right\} dx$$

More about Q Function

$$Q(\alpha) = \int_{\alpha}^{\infty} \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{x^2}{2}\right\} dx$$

- $Q(\alpha)$ is a decreasing function of α .
- For $X \sim \mathcal{N}(\mu_0, \sigma_0^2)$,

$$\Pr\{X > a\} = \int_{a}^{\infty} f_{X}(x) dx = \int_{a}^{\infty} \frac{1}{\sqrt{2\pi\sigma_{0}}} \exp\left\{-\frac{(x-\mu_{0})^{2}}{2\sigma_{0}^{2}}\right\} dx = Q\left(\frac{a-\mu_{0}}{\sigma_{0}}\right)$$

Read the textbook Sec. 4.1.4 for more discussion about Q function.

Random Processes

- Sample values of a random process at time $t_1, t_2, ...,$ are a collection of random variables $\{X(t_1), X(t_2), ...\}$.
 - Continuous-time random process: $t \in \mathbb{R}$ (set of real numbers)
 - Discrete-time random process: $t ∈ \mathbb{Z}$ (set of integers)
- Statistical description of random process X(t)
 - A complete statistical description of a random process X(t) is known if for any integer n and any choice of $(t_1,...,t_n) \in \mathbb{R}^n$, the joint PDF of $(X(t_1),...,X(t_n))$ is given.

Difficult to be obtained!

Statistical Averages

The mean of the random process X(t):

$$\mu_X(t_k) = E[X(t_k)] = \int_{-\infty}^{\infty} x f_{X(t_k)}(x) dx$$

 $X(t_k)$ is the random variable obtained by observing the random process X(t) at time t_k , with the pdf $f_{X(t_k)}(x)$.

The autocorrelation function of the random process X(t):

$$R_X(t_1, t_2) = E[X(t_1)X(t_2)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 x_2 f_{X(t_1), X(t_2)}(x_1, x_2) dx_1 dx_2$$

 $f_{X(t_1),X(t_2)}(x_1,x_2)$ is the joint pdf of $X(t_1)$ and $X(t_2)$.

Power and Power Spectrum of Random Signal

Time Domain

Deterministic signal s(t): $P_s = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |s(t)|^2 dt$

Random signal (described as a random process X(t)):

$$P_{X} = E \left[\lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} X^{2}(t) dt \right] = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} R_{X}(t, t) dt$$

Frequency Domain

Deterministic signal:

$$P_{s} = \int_{-\infty}^{\infty} G_{s}(f)df, \ G_{s}(f) \triangleq \lim_{T \to \infty} \frac{1}{T} |S_{T}(f)|^{2} \Leftrightarrow \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} s(t+\tau)s^{*}(t)dt$$

Random signal:

$$P_X = \int_{-\infty}^{\infty} G_X(f) df, \quad G_X(f) \triangleq \lim_{T \to \infty} \frac{1}{T} E |X_T(f)|^2 \Leftrightarrow \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} R_X(t + \tau, t) dt$$

Example 1. Wide-Sense Stationary (WSS) Processes

- A random process X(t) is wide-sense stationary (WSS) if the following conditions are satisfied:
 - $\mu_X(t) = E[X(t)]$ is independent of t;
 - $R_X(t_1,t_2)$ depends only on the time difference $\tau=t_1-t_2$, and not on t_1 and t_2 individually.
 - ✓ Power: $P_X = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} R_X(t, t) dt = R_X(0)$
 - V Power spectrum: $G_X(f) \Leftrightarrow \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} R_X(t+\tau,t) dt = R_X(\tau)$

Example 2. Cyclostationary Processes

- A random process X(t) with mean $\mu_X(t)$ and autocorrelation function $R_X(t+\tau,t)$ is called cyclostationary, if both the mean and the autocorrelation are periodic in t with some period T_0 , i.e., if
 - $\mu_X(t+T_0) = \mu_X(t)$
 - $R_X(t + \tau + T_0, t + T_0) = R_X(t + \tau, t)$

- ✓ Power: $P_X = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} R_X(t,t) dt = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} R_X(t,t) dt$
- $\checkmark \quad \text{Power spectrum:} \quad G_X(f) \Leftrightarrow \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} R_X(t+\tau,t) dt = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} R_X(t+\tau,t) dt$

Signal Transmission through a Linear System

Linear Time Invariant (LTI) System

• If a WSS random process X(t) passes through an LTI system with impulse response h(t), the output process Y(t) will be also WSS with mean

$$\mu_{Y} = \mu_{X} \int_{-\infty}^{\infty} h(t)dt = \mu_{X} H(0)$$

autocorrelation

$$R_{Y}(\tau) = R_{X}(\tau) * h(\tau) * h(-\tau)$$

and power spectrum

$$G_{v}(f) = G_{v}(f) |H(f)|^{2}$$

Example 3. Gaussian Processes

- A random process X(t) is a **Gaussian** process if for all n and all $(t_1, ..., t_n)$, the random variables $\{X(t_i)\}_{i=1}^n$ have a jointly Gaussian pdf.
 - ✓ For Gaussian processes, knowledge of the mean and autocorrelation gives a complete statistical description of the process.
 - ✓ If a Gaussian process X(t) is passed through an LTI system, the output process Y(t) will also be a Gaussian process.

Example 4. White Processes

• A random process X(t) is called a white process if it has a flat spectral density, i.e., if $G_X(t)$ is a constant for all f.

✓ Autocorrelation:

$$G_X(f) \Leftrightarrow R_X(\tau) = \frac{N_0}{2} \delta(\tau)$$

 $\frac{N_0}{2}$: two-sided power spectral density

✓ If a white process X(t) passes through an LTI system with impulse response h(t), the output process Y(t) will not be white any more.

Power spectrum of Y(t): $G_Y(f) = \frac{N_0}{2} |H(f)|^2$

Power of
$$Y(t)$$
: $P_{Y} = \frac{N_{0}}{2} \int_{-\infty}^{\infty} |H(f)|^{2} df = \frac{N_{0}}{2} \int_{-\infty}^{\infty} h^{2}(t) dt$