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Lecture 5. Random Signal Analysis

• Random Variables and Random Processes

• Signal Transmission through a Linear System
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Discrete Random Variables

• A discrete random variable takes on a countable number 
of possible values.

Probability Mass Function: 

Cumulative Distribution Function:

Expected Value, or Mean:

The m-th Moment:

Suppose that a discrete random variable X takes on one of the values 
x1,…, xn.

( ) Pr{ }i ip x X x 

1
[ ] ( )

n

i i
i

E X x p x


 

( ) Pr{ } ( )
i

i
x a

F a X a p x


   

 Distribution functions:

 Moments:

1

[ ] ( ),
n

m m
i i

i

E X x p x


  1,2,...m 

1
( ) 1

n

i
i

p x




X 

Lin Dai (City University of Hong Kong)         EE3008 Principles of Communications       Lecture 5



3

Continuous Random Variables

• A continuous random variable has an uncountable set of 
possible values.

 f is called the probability density function (pdf)
of X, denoted as:

 Cumulative Distribution Function (cdf):

 Expected Value, or Mean:

 The m-the Moment:
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X is a continuous random variable if there exists a nonnegative 

function f, defined for all real                  , having the property that for 

any set B of real numbers,
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Variance

• Define variance of a random variable X as:

 22Var[ ] [ ] [ ]X E X E X 

2Var[ ] ( [ ])X E X E X   

 Var[X] describes how far apart X is from its mean on the average.

 Var[X] can be also obtained as:

 The square root of Var[X],       , is called the standard deviation
of X.

 Var[X] is usually denoted as       .2
X

X
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Example 1. Uniform Distribution

• X is a uniform random variable on the interval (, ) if its pdf is given by

 Mean:

 cdf: 

 Variance:
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Example 2. Gaussian (Normal) Distribution

• X is a Gaussian random variable with parameters 0 and      if its pdf is 
given by
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More about Q Function
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• Q() is a decreasing function of .
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Read the textbook Sec. 4.1.4 for more discussion about Q function.
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Random Processes

• Sample values of a random process at time t1, t2, …, are a 
collection of random variables {X(t1), X(t2), …}.

– Continuous-time random process: 

– Discrete-time random process: 

t

t

(set of real numbers)

(set of integers)

• Statistical description of random process X(t)

– A complete statistical description of a random process X(t) is known 
if for any integer n and any choice of                      , the joint PDF of1( ,..., ) n

nt t 

1( ( ),..., ( ))nX t X t is given.
Difficult to be obtained!
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Statistical Averages

• The mean of the random process X(t):

• The autocorrelation function of the random process X(t):
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X(tk) is the random variable obtained by observing the random process X(t)
at time tk, with the pdf            .( ) ( )

kX tf x

is the joint pdf of X(t1) and X(t2).1 2( ), ( ) 1 2( , )X t X tf x x
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Power and Power Spectrum of Random Signal

Deterministic signal s(t):

Time Domain

Random signal (described as a random process X(t)):
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Example 1. Wide-Sense Stationary (WSS) Processes

• A random process X(t) is wide-sense stationary (WSS) if the following 
conditions are satisfied:

 Power:

 Power spectrum: 
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1 2( , )XR t t– depends only on the time difference =t1-t2, and not on t1 and t2
individually.
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Example 2. Cyclostationary Processes

• A random process X(t) with mean X(t) and autocorrelation function 
RX(t+, t) is called cyclostationary, if both the mean and the 
autocorrelation are periodic in t with some period T0, i.e., if 

 Power:

 Power spectrum: 
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Signal Transmission through a 
Linear System
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Linear Time Invariant (LTI) System

• If a WSS random process X(t) passes through an LTI system with 
impulse response h(t), the output process Y(t) will be also WSS 
with mean
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Example 3. Gaussian Processes

• A random process X(t) is a Gaussian process if for all n and all (t1, …, tn), 
the random variables               have a jointly Gaussian pdf. 1{ ( )}n

i iX t 

 For Gaussian processes, knowledge of the mean and auto-
correlation gives a complete statistical description of the process. 

 If a Gaussian process X(t) is passed through an LTI system, the 
output process Y(t) will also be a Gaussian process.
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Example 4. White Processes

0( ) ( ) ( )
2X XG R Nf   

: two-sided power spectral density 

• A random process X(t) is called a white process if it has a flat spectral 
density, i.e., if GX(f) is a constant for all f. 
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 Autocorrelation:

 If a white process X(t) passes through an LTI system with impulse 
response h(t), the output process Y(t) will not be white any more. 

0 02 2
2 2( ) ( )N N

YP H f df h t dt
 

 
  

0 2
2( ) | ( ) |N

YG f H fPower spectrum of Y(t):
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